- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Alsunni, Yousef A. (2)
-
Musgrave, Charles B. (2)
-
Al Khulaifi, Faysal M. (1)
-
Alherz, Abdulaziz W (1)
-
Alherz, Abdulaziz W. (1)
-
Alsunni, Yousef A (1)
-
Holewinski, Adam (1)
-
Medlin, J. Will (1)
-
Musgrave, Charles B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Grand canonical density functional theory (GC-DFT) was employed to model the electrocatalytic reduction of CO2 (CO2R) to CO by single titanium atom nitrogen-doped graphene, referred to as Ti@4N-Gr. Previous GC-DFT thermodynamic investigations have identified Ti@4N-Gr as a promising CO2R catalyst; however, no in-depth studies have examined it. In this study, we analyze activation energies of the elementary steps at various applied potentials in addition to thermodynamics of CO2R to CO catalyzed by Ti@xN-Gr defects. Reaction intermediates are predicted to be destabilized when Ti is coordinated to fewer N atoms. Based on reaction thermodynamics, Ti@4N-Gr and all defect configurations are predicted to be potentially promising catalysts for CO2R to CO at an applied potential of −0.7 VSHE while at −0.3 and −1.2 VSHE the reaction is predicted to be hindered by relatively large grand free energy differences between intermediates. We propose a criterion to identify optimum applied potentials for CO2R to CO based on the potential of zero charge (PZC) of the reaction intermediates and the contention that the optimum applied potential for CO2R to CO lies in the range PZC∗CO<𝑉more » « less
-
Impact of pretreatment and thiol modifiers on the partial oxidation of glutaraldehyde using Pd/Al2O3Al Khulaifi, Faysal M.; Alsunni, Yousef A.; Musgrave, Charles B.; Holewinski, Adam; Medlin, J. Will (, Applied Catalysis A: General)
-
Alsunni, Yousef A.; Alherz, Abdulaziz W.; Musgrave, Charles B. (, The Journal of Physical Chemistry C)
An official website of the United States government
